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RANDOM MOTION OF SOLID PARTICLES AND ENERGY 

DISSIPATION IN TWO-PHASE FLOW 

L. I. Krupnik, P. V. Ovsienko, 
V. N. Oleinik, and V. G. Ainshtein 

UDC 53~.529.5 

We obtain equations describing the fluctuations and energy loss of particle col- 
lisions in two-phase flow from the experimental velocity distribution functions. 

The random motion of solid particles in a turbulent gas flow is one of the deciding 
factors in the formation of hydrodynamic structures in two-phase flow and it significantly 
affects the intensity of transport processes [i]. The mechanism of the generation of ran- 
dom motion is usually [2-5] explained in terms of the time and spatial scales of turbulence 
in the carrier medium and collisions between the particles and the walls of the channel. 

Theoretical studies [4, 5j have shown that as the particle relaxation time increases, 
the degree to which the particles are drawn into the fluctuating motion of the gas decreases 
and approaches zero in the case when the phases slip past one another with their average 
velocities. This type of two-phase motion takes place in the transport of hydraulically 
large particles of sizes 1'10-4-3"10 -3 m in chemical engineering processes such as hetero- 
geneous catalysis, gasification of coal, adsorption, dehydration, sorting, and so on. 

The mathematical description of the motion of solid particles with their collisions 
taken into account [6, 7] leads to equations containing the stress tensor in the solid phase 
and the flux vector of the fluctuating motion of the solid particles as unknowns. As ;~hown 
in [6], these quantities can be expressed explicitly in terms of the macroscopic parameters 
of the two-phase flow in the framework of the statistical theory of dispersed systems with 
the help of the position and velocity distribution functions of the solid particles. 

There is no information available in the literature on the parameters of random motion 
in two-phase flow in the presence of collisions between the solid particles. This situation 
has stimulated the work described in the present paper. 

We carried out a systematic experimental study of the distribution functions of the 
longitudinal P(ux) and transverse P(uy) components of the instantaneous velocities of glass 
balls of diameters d = 113 • 9 ~n and d = 1.18 man. The measurements were done by the con- 
tact method [8], in which signals can be detected from a single collision of a solid p~rti- 
cle against the sensitive area of the detector. With the help of an AI-256-6 pulse analyzer, 
we obtained data on the normal component of the amplitude of the collision impulse, the time 
duration of the collision, the time interval between collisions, and the flux density of par- 
ticles at different points in a cross section of the channel. The study was performed on the 
stabilized section of the motion in a vertical pipe of diameter D = 2R = 50 mm. The velocity 
of the medium (air) was varied between 5 and 23 m/sec. The input--output ratio of solic par- 
ticles in the flow reached 25 kg'h/(kg'h). Before taking measurements in the pipe, we first 
calibrated the detectors by fixing the number of the channel of the pulse analyzer receiving 
a signal from a particle of known size, and moving with a known velocity and contactin~ the 
sensitive element of the detector at a known angle of incidence. 
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Fig. i. Probability density curvesof the longitudinal (a-d) 
and transverse (e, f) components of the instantaneous velocity 
of glass balls of diameter d = 113 ~m (curves i and 2) and 
1.18 mm (curves 3 and 4): (a), (c), center of the channel 
R = 0; (b), (d), R = 24 mm; (a), (b), w = 12.3 m/sec, i) Up = 
0.809 kg-h/(kg'h), 2) 19.47; (c), (e), i, 2) w = 23.1 m/sec, 
I) Up = 0.48 kg'h/(kg'h), 2) 7.1; 3, 4) w = 23.5 m/sec, 3) 
Up =0.48 kg'h/(kg'h), 4) 8.6; (d), w = 12.3 m/sec, I) ~p = 
0.24 kg'h/(kg.h), 2) 21.65; (f), i, 2) w = 23.1 m/sec, i) ~p 
= 0,85 kg'h/(kg'h), 2) 10.44; 3, 4) w = 23.5 m/sec, 3) ~p = 
1.0 kg-h/(kg'h), 4) 16.5. 

The nature and evolution of the measured probability densities of the longitudinal 
P(u x) and transverse P(uy) components of the instantaneous velocities of the particles are 
shown in Fig. i. 

Note the slight deviation of the curves P(u x) from a normal distribution for ~p ~ 5 
independently of the velocity of the medium and the size of the particles�9 The average 
static distribution of particles in space is qualitatively uniform and does not depend on 
the radial coordinate, at least to within several particle diameters of the walls of the 
pipe. Note the large widths of the velocity distribution functions. In particular, the 
limiting velocity of steady motion of an isolated particle in free space u x = w - v is in- 
cluded within the widths of the P(u x) curves in the case of particles of diameter 1.18 mm 
(Figs. ic and id; curves 3 and 4). The functions P(u x) and P(Uy) for these particles were 
analyzed in detail earlier [9]. The velocities of a significant (up to 15%) fraction of 
the particles of diameter 113 ~m are larger than the average velocity of the medium. The 
presence of "fast" particles in the flow was noted earlier in [10, II] in a study of two- 
phase flows using high-speed motion pictures. It is evidently a consequence of the change 
in the structure of the turbulence of the medium induced by the solid particles and the 
participation of the particles in the large-scale fluctuating motion of the gas. The data 
on the distribution of the transverse velocities of the particles Uy (Figs. le and if) were 
obtained on the channel wall and describe zhe motion of the particles from the axis of the 
flow field to its periphery The shape of the function P(u ) is practically independent of �9 y 

the particle diameter. An increase in particle concentration and velocity of the medium is 
accompanied by a steady decrease in the width of the distribution P(uy) and a shift of the 
most probable value of the velocity toward smaller Uy. 
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A physical interpretation of this result is that the two-phase flow becomes more or- 
dered as Bp and w increase~ i.e. the direction of the velocity vectors of the majoritF of 
the particles are oriented along the flow axis. 

The distributions P(u x) and P(uy) can be used to compute the average velocity co:~npon- 
ents of the particles 

the mean-square values of the velocity components 

-Tr 

the average relative velocity of two colliding particles (subscripts 1 and 2) 

(1) 

(2) 

The collision frequency of a single particle moving in a flow of particles with numbe~ den- 
sity n = 68/~d 3 is 

In the absenc~ of explicit forms of the distribution functions P(ui) , we calculated the 
relative velocity c using as a first approximation the following well-known relation ~rom the 
kinetic theory of a nonuniform gas [12] 

-- I/-7' --7' 
where u'---- J ux ~-iup 
of a single particle 

7= ]~P, (5) 

We the~ obtain the following expression for the collision frequency 

fo = ~ n ~ .  (6) 
The rms velocity components (velocity fluctuations) of the particles u i' calculated 

from (2) are shown in Fig. 2. Also, in the usual terminology of turbulent motion the in- 
tensities of random motion of the solid particles in the x and y directions are also si~own: 
Tu x = Ux'/U x and Tuy = Uy'/Uy. 

Because of the ordered motion of the two-phase flow, significant anisotropy in the 
fluctuation transport of particles is observed, i.e., u x' > u '. The intensities of random 
motion of the particles are of the same order of magnitude a~d reach values t_z~i~al of the 
intensities in turbulent gas flow [13]. The contrast between the functions Ux'/U x = f(pp) 
for particles of diameter 0.113 mm and 1.18 mm is due to the different values of the parti- 
cle collision factor B (Fig. 3). The quantity B is the ratio of the collision time of a 
single particle in the flow to the time between its successive collisions with the wails of 
the channel, B = tu/t w. For the larger particles, the quantity B goes from greater than 
unity to less than unity with an increase in their concentration in the flow. At high con- 
centrations the effect of screening of the particles in the flow becomes important, ans the 
collision frequency and momentum loss at the walls decreases and hence the mean velocity 
increases. From Fig. 3a we have B < 1 on the entire pp axis for particles of diameter d = 
113 pm. Also because the average velocity of the small particles in the flow is close to the 
the equilibrium velocity of an isolated particle u- x = w - v, the effect of screening is weak 
and collisions with the walls lead to a decrease in the average velocity of the particles 
and hence to an increase in Uxi/Ux . 

Certain general features of the behavior of solid particles in a turbulent gas flow can 
be understood in terms of the particle relaxation time 

4psd 
~r~ 3pep (m --u) (7) 

The ratio of the collision time t u to ~r (Fig. 3b) in the region studied here is described 
by a universal function of the input--output ratio of the particles: 

t__~ = A (8) 
~P 
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Fig. 2. Longitudinal (a) and transverse (b) components of 
the rms velocity fluxtuation (curves 1-5) and intensity of 
the random motion (curves 1'-5') of solid particles: 1-3, 
1'-3') d = ll3 pm; 4, 5; 4', 5') d = 1.18 mm; l, l') w = 
123 m/sec; .2, 2') 17.4; 3, 3') 23.1; 4, 4') 16.5; 5, 5') 
w = 23.5 m/sec. 

Fig. 3. Dependence of the characteristic times of particle 
motion on the input--output ratio of particles: a) colli- 
sion factor of the particles, b) ratio of the collision 
time to the relaxation time: 1-3) d = 113 pm, 4, 5) d = 
1.18 mm; i) w = 12.3 m/sec; 2) 17.4; 3) 23.1; 4) 16.5; 5) 
w = 23.5 m/sec. 

with the proportionality constant A = 0.625. 

On the other hand, we have from (6) and (7) 

t~ = co (w - -  u) u (9 )  
~r  8 V 2  ~'w~p 

S o l v i n g  (8 )  and (9 )  s i m u l t a n e o u s l y ,  we o b t a i n  an e x p r e s s i o n  f o r  t h e  rms v e l o c i t y  f l u c t u a t i o n  
of the particles 

u--r= co(w- -u )u  (10)  
8 V 2 w A  ' 

f r o m  which  we o b t a i n  t h e  i m p o r t a n t  c o n c l u s i o n  t h a t  t h e  random m o t i o n  o f  s o l i d  p a r t i c l e s  in  
t h e  t w o - p h a s e  f l o w  i s  d e t e r m i n e d  by s t r e a m l i n e  f l o w  o f  t h e  medium a r o u n d  t h e  p a r t i c l e s .  

C o m p a r i s o n  o f  t h e  v a l u e s  o f  u '  c a l c u l a t e d  f rom (10)  w i t h  t h e  e x p e r i m e n t a l  d a t a  ( F i g .  2) 
g i v e s  a c o r r e c t i o n  f a c t o r  o f  4 . 8 .  The i n t r o d u c t i o n  o f  such  a c o r r e c t i o n  f a c t o r  i s  p h y s i c a l l y  
a d m i s s a b l e  b e c a u s e  t h e  a s s u m p t i o n  o f  a M a x w e l l i a n  v e l o c i t y  d i s t r i b u t i o n  o f  t h e  p a r t i c l e s  in  
( 6 )  i s  j u s t  a f i r s t  a p p r o x i m a t i o n  t o  t h e  e x p e r i m e n t a l  d i s t r i b u t i o n  f u n c t i o n s  shown in  F i g .  
1. I n  a d d i t i o n ,  a s t r o n g  a s s u m p t i o n  i s  t h e  l i n e a r  d e p e n d e n c e  be tween  t h e  f o r c e s  a c t i n g  on 
a particle and the relative velocity (w - u) used to calculate the relaxation time in (7). 
Taking into account the correction factor of 4.8, the rms velocity fluctuation (i0) of a 
particle in two-phase flow in the Reynolds number region Re = 20-1000 corresponding to 
streamline flow of the medium takes the form: 
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_% 
u-' = 0.68c D (~  - u) % - .  ( i  1 )  

T h i s  e q u a t i o n  d e s c r i b e s  t h e  e x p e r i m e n t a l  d a t a  t o  w i t h i n  • The l a r g e  v a l u e  o f  t h e  i n t e n -  
s i t y  o f  t h e  random mo t ion  o f  t h e  p a r t i c l e s  u ' / u  ( F i g .  2) c h a r a c t e r i z e s  t h e  t w o - p h a s e  f low 
c o n s i d e r e d  h e r e  as  a n o n e q u i l i b r i u m  s y s t e m  [ 1 ] .  Because  o f  r e l a x a t i o n  p r o c e s s e s  ( s u c h  as  
e n e r g y  d i s s i p a t i o n  in  i n e l a s t i c  c o l l i s i o n s  o f  t h e  s o l i d  p a r t i c l e s )  t h e  s y s t e m  a p p r o a c h e s  an 
e q u i l i b r i u m  s t a t e  and t h e  random m o t i o n  o f  t h e  p a r t i c l e s  s h o u l d  d e c r e a s e .  I t  f o l l o w s  f rom 
t h e  p a r t i c l e  v e l o c i t y  d i s t r i b u t i o n  f u n c t i o n s  ( s e e  F i g .  1) t h a t  t h i s  i s  an i n h e r e n t  p r a p e r t y  
o f  t w o - p h a s e  f l o w .  I f  e n e r g y  i s  s u p p l i e d  t o  t h e  medium, a s t e a d y  s t a t e  can  be e s t a b l i s h e d  
in  t h e  s y s t e m ,  in  which  t h e  q u a n t i t y  u ' / u  t a k e s  on a c o n s t a n t  v a l u e .  R e l a x a t l o n  p r o c e s s e s  
in  t h e  f low s t i l l  e x i s t ,  bu t  t h e y  a r e  compensa t ed  by t h e  s u p p l y  o f  e n e r g y  t o  t h e  gas  [7 ,  14] .  

We c o n s i d e r  t h e  q u a s i - s t a b i l i z e d  s e c t i o n  o f  v e r t i c a l  f l o w  o f  a s u s p e n s i o n  i n  gas .  The 
i n s t a n t a n e o u s  v a l u e  o f  t h e  k i n e t i c  e n e r g y  o f  t h e  s o l i d  p a r t i c l e s  i s  w r i t t e n  as  a sum ~f an 
a v e r a g e  k i n e t i c  e n e r g y  and a f l u c t u a t i o n :  

Z=Z-+ E', (12) 
where  t h e  two t e rms  in  t h i s  e x p r e s s i o n  c h a r a c t e r i z e  t h e  m o t io n  o f  t h e  sy s t em  o f  p a r t i  z l e s  
as  a whole  w i t h  t h e  c e n t e r - o f - m a s s  v e l o c i t y  and t h e  random m o t io n  o f  t h e  p a r t i c l e s  abou t  t h e  
c e n t e r  o f  mass ,  r e s p e c t i v e l y .  For  i n e l a s t i c  b i n a r y  c o l l i s i o n s ,  a p a r t  ~E12 o f  t h e  k i n e t i c  
e n e r g y  

4 

i s  d i s s i p a t e d  [7] and t h e n  r e g e n e r a t e d  by i r r e v e r s i b l e  e n e r g y  l o s s e s  in  t h e  gas  p h a s e  

The q u a n t i t y  Cxy in  (13)  i s  t h e  component  o f  t h e  r e l a t i v e  v e l o c i t y  o f  t h e  two pa~: t i -  
c l e s  a l o n g  t h e  l i n e  b f  t h e  c o l l i s i o n ,  which  i n  t h e  c a s e  o f  s p h e r i c a l  p a r t i c l e s  c o i n c i d e s  
w i t h  t h e  l i n e  j o i n i n g  t h e  c e n t e r s  o f  t h e  two s p h e r e s .  F o l l o w i n g  [ 1 5 ] ,  we assume t h a t  a l l  
d i r e c t i o n s  o f  t h e  l i n e  j o i n i n g  t h e  c e n t e r s  o f  t h e  two p a r t i c l e s  a r e  e q u a l l y  p r o b a b l e  and 
t h e  a v e r a g e  v a l u e  o f  t h e  a n g l e  be tween  t h i s  l i n e  and a c o o r d i n a t e  a x i s  i s  ~ /4 .  Then 

c~. = ~cos ~-- .  4 (14)  

Assuming t h e  number o f  c o l l i s i o n s  N p e r  u n i t  t i m e  i s  [12] 

2 

we o b t a i n  from (13)  and (14)  an e q u a t i o n  f o r  t h e  t o t a l  e n e r g y  d i s s i p a t i o n  f rom p a r t i c ] e  c o l -  
l i s i o n s  i n s i d e  a vo lume o f  t h e  p i p e  ~RZL 

h E  = 3 "I/ 2 ~2u ' ~ R 2  L (t - -  k 2) p s 
4d (16)  

The pressure loss from particle--particle collisions in two-phase flow can be obtained 
from the energy dissipation using the idea of continuous generation of energy of the random 
motion of solid particles discussed above. According to this mechanism, the work done by 
the dissipative forces in an isolated volume during a time At is compensated by the work 
done by the gas flowing a certain path length in the same time interval: 

h E A t  = A P u ~ R ~ A t ,  (17) 

hence with the use of (16) we obtain 

AP,~ = !.05OZu '" ( I - -  kz) psL (18 )  
dw 

Calculation of ~Pu from (18)  with k = 0.94 [16] for the coefficient of restitution of 
glass particles and with the use of the experimental data of the present paper (Fig. 4) 
shows the importance of the contribution of particle--particle collisions to the total en- 
ergy loss in a two-phase flow. 

To a large extent this assertion is correct for the flow of a suspension of small par- 
ticles in a gas. For example, for particles of diameter d ~ 0.1 mm, the quantity AP u :.n- 
creases with increasing pp and w and reaches (0.3-0,4)&P. An increase in the size of the 
particles leads to a decrease in the component &Pu" According to the data of Fig. 4, the 
contribution of AP u to the total pressure loss in a flow with particles d .~ 1 mm is quite 
small (3-5%). Comparison of AP u with losses due to the suspension of solid particles iPs, 
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Fig. 4. Contribution of particle--parti- 
cle collisions to the energy loss in 
two-phase flow: i-4) APu/AP; 5-8) 
APu/APs; i, 8) w = 23.5 m/sec; 2, 7) 
12.3; 3, 6) 17.4; 4, 5) 23.1 m/sec; I, 
8) d = 1.18 mm; 2~7) 113 ~m. 

which is one of the principal components of the total energy lost (see Fig. 4) indicates 
that in the region of the parameters Dp, w, d important in practice, the quantities AP u and 
AP s are of the same order. 

Because of the lack of information on the random motion of particles, the component 
AP u of the loss has generally been determined [17-19] by resorting to the conventional pic- 
ture of energy loss in the flow of continuous medium based on the drag coefficient. At best, 
such an empirical approach leads [17-19] to estimates of the total energy loss in two-phase 
flow. The course taken in the present paper leads (according to (ii) and (18)) to a phys- 
ically valid description of the separate components of the energy loss using only data on 
the average velocities and the physical and mechanical properties of the particles. 

NOTATION 

u, u', c, average velocity, rms velocity fluctuation, and relative velocity of the par- 
ticles; v, terminal velocity; w, average velocity of the gas; ~p, 6, n, input--output mass, 
volumetric, and number ratios of the particles; f0, collision frequency of a single parti- 
cle; tu, time between two successive particle-particle collisions; tw, time between two suc- 
cessive particle-wall collisions; ~r, relaxation time; p, Ps, densities of the gas and the 
solid particles; CD, drag coefficient; k, coefficient of restitution; AP, total pressure 
loss of the gas; AP u, pressure loss of the gas resulting from particle collisions in two- 
phase flow; APs, pressure loss of the gas due to suspension of the material. 
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ANALYSIS OF MELTING IN A VERTICAL ANNULAR GAP IN 

CONDITIONS OF HEAT TRANSFER WITH AN INDUCED HEAT- 

CARRIER FLUX 

V. M. Gribkov, V. M. Eroshenko, 
and K, V. Karmastin 

UDC 536.24:536.421.1 

Experimental results on the melting of materials in a vertical annular gap in con- 
ditions of heat transfer with an induced heat-carrier flux are obtained and gen- 
eralized. 

There has been extensive experimental and theoretical investigation of the heat t~ans- 
fer on melting (solidification) [1-8], paying particular attention to the influence of latural 
convection on the heat-transfer intensity, the determination of the phase-interface position, 
and the derivation of generalizing relations for the volume fraction of melt with boundary 
conditions of types I and II. In practice, melting (solidification) with heat transfec to an 
induced heat-carrier flux is of great interest. The solution of such problems is particu- 
larly urgent in creating effective and economical heat storage units operating togethei~ with 
various types of power equipment. At present, there is limited information av~ilab- 
here; it basically pertains to the theoretical investigation of heat transfer in the exterior 
solidification of plane or cylindrical channels cooled by a heat-carrier flux [9-11]. Note 
that the solutions obtained take no account of t~e role of natural convection in the m~it, 
whereas convection has a significant influence on the heat-transfer characteristics in melt- 
ing (solidification). In addition, there are no formulas as yet for the calculation of the 
integral heat-transfer characteristics on melting (solidification) in conditions of induced 
heat-carrier flow. 

The aim of the present work is to elucidate the basic laws of heat transfer on me~ting 
in a vertical annular gap in conditions of induced heat-carrier flow, and to obtain a ~$en- 
eralizing dependence for the calculation of the stored energy. 

Experimental investigation of the heat transfer on melting is undertaken on five 
models. Each model is a system of two vertical coaxial cylindrical tubes: a working chan- 
nel and the external shell of the model. There is induced motion of the heat carrier ~long 
the working channel, and the annular gap is filled with melting material. One model is 
briefly described here. The working channel of the model is made from a stainless ste~l 
tube of internal diameter 2.8 mm and wall thickness 0.I mm, with a section of hydrodynamic 
stabilization. At the working-chamber inlet and outlet, there are mixing chambers for mea- 
suring the heat-carrier temperature. The external shell of the model is also made from a 
stainless steel tube (internal diameter 25 mm; wall thickness 0.4 mm). Chromel-Copel therm- 
ocouples are welded to the outer surface of the working channel and the external shell of 
the model, so as to record the wall temperature distribution over the height of the model 
in the course of the experiments. 

One basic feature of the model is the heat-insulating system, which is required to en- 
sure adiabatic conditions at the external shell. It consists of a vacuum chamber, oh~iz 
heaters, and a heat-insulating coating. Ohmic heaters are placed on the outer surface 9f 
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